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Abstract. In this paper, we study the estimation of a function based on noisy inho-
mogeneous data (the amount of data can vary on the estimation domain). We consider
the model of regression with random design, where the design density is unknown. We
construct an asymptotically sharp estimator which converges, for sup norm error loss,
with a spatially dependent normalisation which is sensitive to the variations in the local
amount of data. This estimator combines both kernel and local polynomial methods, and
it does not depend within its construction on the design density. Then, we prove that the
normalisation is optimal in an appropriate sense.

1. Introduction

In most cases, the models considered in curve estimation do not allow situations where
the data is inhomogeneous, in so far as the amount of data is implied to be constant over
space. This is the case in regression with equispaced design and white noise models, for
instance. In many situations, the data can happen to be concentrated at some points and
to be little elsewhere. In such cases, an estimator shall behave better at a point where there
is much data than where there is little data. In this paper, we propose a theoretical study
of this phenomenon.

The available data [(X
i

, Y
i

), 1 6 i 6 n] is modeled by

Y
i

= f(X
i

) + ⇠
i

, (1.1)

where ⇠
i

are i.i.d. centered Gaussian with variance �2 and independent of X
i

. The design
variables X

i

are i.i.d. of unknown density µ on [0, 1], which is bounded away from 0 and
continuous. We want to recover f . When µ is not the uniform law, the information is
spatially inhomogeneous. We are interested in recovering f globally, with sup norm loss
kgk1 := sup

x2[0,1] |g(x)|. An advantage of this norm is that it is exacting: it forces an
estimator to behave well at every point simultaneously. A commonly used benchmark for
the complexity of estimation over some fixed class ⌃ is the minimax risk, which is given by

R
n

(⌃) := inf
b
f

n

sup
f2⌃

En

f

�

k bf
n

� fk1
 

, (1.2)

where the infimum is taken over all estimators. We say that  
n

is the minimax convergence
rate over ⌃ if R

n

(⌃) ⇣  
n

, where a
n

⇣ b
n

means 0 < liminf
n

a
n

/b
n

6 limsup
n

a
n

/b
n

< +1.
In the regression model (1.1) with ⌃ a Hölder ball with smoothness s > 0 and µ positive and
bounded, we have  

n

= (log n/n)s/(2s+1), see Stone (1982). Thus, in this case, the minimax
rate is not sensitive to the variations in the amount of data. Indeed, such global minimax
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benchmarks cannot assess the design-adaptation property of an estimator. Instead of (1.2),
an improvement is to consider the spatially dependent risk

sup
f2⌃

En

f

�

sup
x2[0,1]

r
n

(x)�1| bf
n

(x)� f(x)|
 

of some estimator bf
n

, where r
n

(·) > 0 is a family of spatially dependent normalisations.
If this quantity is bounded as n ! +1, we say that r

n

(·) is an upper bound over ⌃.
Necessarily, the ”optimal” normalisation satisfies r

n

(x) ⇣ (log n/n)s/(2s+1) for any x (note
that the optimality requires an appropriate definition here). Therefore, in order to exhibit
such an optimal normalisation, we need to consider the sharp asymptotics of the minimax
risk.

2. Results

If s, L > 0, we define the Hölder ball ⌃(s, L) as the set of all the functions f : [0, 1] ! R
such that

|f (k)(x)� f (k)(y)| 6 L|x� y|s�k, 8x, y 2 [0, 1],
where k = bsc is the largest integer k < s. If Q > 0, we define ⌃Q(s, L) := ⌃(s, L) \
{f s.t. kfk1 6 Q}, and we denote simply ⌃ := ⌃Q(s, L) (the constant Q needs not to be
known). All along this study, we suppose:

Assumption D. There is ⌫ 2 (0, 1] and %, q > 0 such that

µ 2 ⌃(⌫, %) and µ(x) > q, for all x 2 [0, 1].

In the following, we consider a continuous, non-negative and nondecreasing loss function
w(·) such that w(x) 6 A(1 + |x|b) for some A, b > 0 (typically a power function). Let us
consider

r
n,µ

(x) :=
⇣ log n

nµ(x)

⌘

s/(2s+1)
. (2.1)

We prove in theorem 1 below that this normalisation is, up to the constants, an upper bound
over ⌃, and that it is indeed optimal in theorem 2. We denote by En

f,µ

the integration with
respect to the joint law Pn

f,µ

of the observations (X
i

, Y
i

), 1 6 i 6 n. The estimator used in
theorem 1 does not depend, within its construction, on µ.

Theorem 1 (Upper bound). Under assumption D, if bf
n

is the estimator defined in section 4
below, we have for any s, L > 0,

limsup
n

sup
f2⌃

En

f,µ

�

w
�

sup
x2[0,1]

r
n,µ

(x)�1| bf
n

(x)� f(x)|
� 

6 w(P ), (2.2)

where

P := �2s/(2s+1)L1/(2s+1) '
s

(0)
⇣ 2

2s + 1

⌘

s/(2s+1)
(2.3)

and '
s

is defined as the solution of the optimisation problem

'
s

:= argmax
'2⌃(s,1;R),
k'k261

'(0), (2.4)

where ⌃(s, L; R) is the extension of ⌃(s, L) to the whole real line.

In the same fashion as in Donoho (1994), the constant P is defined via the solution of
an optimisation problem which is connected to optimal recovery. We discuss this result in
section 3, where further details about optimal recovery can be found. The next theorem
shows that r

n,µ

(·) is indeed optimal in an appropriate sense. In what follows, the notation
|I| stands for the length of an interval I.
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Theorem 2 (Lower bound). Under assumption D, if I
n

⇢ [0, 1] is any interval such that
for some " 2 (0, 1),

|I
n

|n"/(2s+1) ! +1 as n ! +1, (2.5)
we have

liminf
n

inf
b
f

n

sup
f2⌃

En

f,µ

�

w
�

sup
x2I

n

r
n,µ

(x)�1| bf
n

(x)� f(x)|
� 

> w
�

(1� ")P
�

,

where P is given by (2.3) and the infimum is taken among all estimators. A consequence
is that if I

n

is such that (2.5) holds for any " 2 (0, 1), we have

liminf
n

inf
b
f

n

sup
f2⌃

En

f,µ

�

w
�

sup
x2I

n

r
n,µ

(x)�1| bf
n

(x)� f(x)|
� 

> w(P ). (2.6)

This result says that the normalisation r
n,µ

(·) cannot be strongly improved: no normal-
isation is uniformly better than r

n,µ

(·) within a ”large” interval. This result is discussed in
the following section.

3. Discussion

Literature. When the design is equidistant, that is X
i

= i/n, we know from Korostelev
(1993) the exact asymptotic value of the minimax risk for sup norm error loss. If  

n

:=
(log n/n)s/(2s+1), we have for any s 2 (0, 1] and ⌃ = ⌃(s, L)

lim
n!+1

inf
b
f

n

sup
f2⌃

E
f

�

w( �1
n

k bf
n

� fk1)
 

= w(C),

where
C := �2s/(2s+1)L1/(2s+1)

⇣s + 1
2s2

⌘

s/(2s+1)
. (3.1)

This result was the first of its kind for sup norm error loss. In the white noise model

dY n

t

= f(t)dt + n�1/2dW
t

, t 2 [0, 1], (3.2)

where W is a standard Brownian motion, Donoho (1994) extends the result by Korostelev
(1993) to any s > 1. In this paper, the author makes a link between statistical sup norm
estimation and the theory of optimal recovery (see below). It is shown for any s > 0 and
⌃ = ⌃(s, L) that the minimax risk satisfies

lim
n!+1

inf
b
f

n

sup
f2⌃

E
f

�

w( �1
n

k bf
n

� fk1)
 

= w(P1), (3.3)

where P1 is given by (2.3) with � = 1. When s 2 (0, 1], we have P = C, see for instance
in Leonov (1997). Since the results by Korostelev and Donoho, many other authors worked
on the problem of sharp estimation (or testing) in sup norm. On testing, see Lepski and
Tsybakov (2000), see Korostelev and Nussbaum (1999) for density estimation and Bertin
(2004a) for white noise in an anisotropic setting. The paper by Bertin (2004b) works in
the model of regression with random design (1.1). When µ satisfies assumption D and
⌃ = ⌃Q(s, L) for s 2 (0, 1], it is shown that

lim
n!+1

inf
b
f

n

sup
f2⌃

En

f,µ

�

w(v�1
n,µ

k bf
n

� fk1)
 

= w(C), (3.4)

where C is given by (3.1) and v
n,µ

:= [log n/(n inf
x

µ(x))]s/(2s+1). Note that the rate v
n,µ

di↵ers from (and is larger than)  
n

when µ is not uniform. A disappointing fact is that v
n,µ

depends on µ via its infimum only, which corresponds to the point in [0, 1] where we have
the least information. Therefore, this rate does not take into account all the other regions
with more data.

As a consequence, the results presented here are extensions of both the papers by Donoho
(1994) and Bertin (2004b): our results are stated in the regression model with random
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design, where the design density is unknown. In particular, we provide the exact asymptotic
value of the minimax risk in regression with random design for any s > 0, which was
known only for s 2 (0, 1] beforehand. Nevertheless, the main novelty is, in our sense,
the introduction of a spatially dependent normalisation factor for the assessment of an
estimator, with an appropriate optimality criterion. The asymptotically sharp minimax
framework is considered here only by necessity.

Optimal recovery. The problem of optimal recovery consists in recovering f from

y(t) = f(t) + "z(t), t 2 R, (3.5)

where " > 0, z is an unknown deterministic function such that kzk2 6 1 and f 2 C(s, L; R) :=
⌃(s, L; R) \ L2(R). The link between this deterministic problem and estimation with sup
norm loss in white noise model was made by Donoho (1994), see also Leonov (1999). The
minimax risk for the optimal recovery of f at 0 from (3.5) is defined by

E
s

(", L) := inf
T

sup
f2C(s,L;R)
kf�yk26"

|T (y)� f(0)|,

where inf
T

is taken among all continuous and linear forms on L2(R). We know from Micchelli
and Rivlin (1977), Arestov (1990) that

E
s

(", L) = inf
K2L2(R)

⇣

sup
f2C(s,L;R)

�

�

�

Z

K(t)(f(t)� f(0))
�

�

�

+ "kKk2

⌘

= sup
f2⌃(s,L;R)
kfk26"

f(0).

Note that '
s

satisfies '
s

(0) = E
s

(1, 1). To our knowledge, the function '
s

is known only for
s 2 (0, 1] [ {2}. The kernel K

s

for s 2 (0, 1] was found by Korostelev (1993) and by Fuller
(1961) for s = 2. For any s > 0, we know from Leonov (1997) that '

s

is well defined and
unique, that it is even and compactly supported and that k'

s

k2 = 1. A renormalisation
argument from Donoho (1994) shows that E

s

(", L) = E
s

(1, 1)L1/(2s+1)"2s/(2s+1), thus it
su�ces to know E

s

(1, 1). If we define

B(s, L) := sup
f2C(s,L;R)

�

�

�

Z

K
s

(t)(f(t)� f(0))
�

�

�

, (3.6)

we have the decomposition E
s

(1, 1) = B(s, 1)+kKk2, and in particular, if P is given by (2.3)
and

c
s

:=
⇣�

L

⌘2/(2s+1)⇣ 2
2s + 1

⌘1/(2s+1)
, (3.7)

we have
P = Lcs

s

(B(s, 1) + kKk2). (3.8)

About theorem 1. We can understand the result of theorem 1 heuristically. Following
Brown and Low (1996) and Brown et al. (2002), we can say that an ”idealised” statistical
experiment which is equivalent (in the sense that the LeCam deficiency goes to 0) to the
model (1.1) is given by the heteroscedastic white noise model

dY n

t

= f(t)dt +
�

p

nµ(t)
dB

t

, t 2 [0, 1], (3.9)

where B is a Brownian motion. In view of the result (3.3) by Donoho (1994), which is
stated in the model (3.2), and comparing the noise levels in the models (3.2) and (3.9)
(with � = 1), we can explain informally that our rate r

n,µ

(·) comes from the former rate
 

n

where we ”replace” n by nµ(x).
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About theorem 2. From Bertin (2004b), we know when s 2 (0, 1] that

liminf
n

inf
b
f

n

sup
f2⌃

En

f,µ

�

w(v�1
n,µ

k bf
n

� fk1)
 

> w(P ),

where v
n,µ

= [log n/(n inf
x

µ(x))]s/(2s+1). An immediate consequence is

liminf
n

inf
b
f

n

sup
f2⌃

En

f,µ

�

w
�

sup
x2[0,1]

r
n,µ

(x)�1| bf
n

(x)� f(x)|
� 

> w(P ), (3.10)

where it su�ces to use the fact that r
n,µ

(x) 6 v
n,µ

for any x 2 [0, 1]. This entails that r
n,µ

(·)
is optimal in the classical minimax sense. However, this lower bound is much weaker than
the one considered in theorem 2: it does not exclude the existence of another normalisation
%

n

(·) such that %
n

(x) < r
n,µ

(x) for ”many” x. Therefore, to prove the optimality of r
n,µ

(·),
we need to localise the lower bound. Indeed, in theorem 2, if we choose I

n

= [0, 1] we find
back (3.10) and if I

n

= [x̄� (log n)� , x̄ + (log n)� ] \ [0, 1] for any � > 0 and x̄ 2 [0, 1] such
that µ(x̄) 6= inf

x2[0,1] µ(x), then obviously v
n,µ

does not satisfy (2.6).

About assumption D. In assumption D, µ is supposed to be bounded from below, and
from above since it is continuous over [0, 1]. When µ is vanishing or exploding at a fixed
point, we know from Gäı↵as (2005) that a wide range of pointwise minimax rates can be
achieved, depending on the behaviour of µ at this point. In this case, we expect the optimal
normalisation (whenever it exists) to di↵er from the classical minimax rate  

n

not only up
to the constants, but in order.

Adaptation to the smoothness. The estimator used in theorem 1 depends on the
smoothess s of f (see below). In practice, such a parameter is unknown. Therefore, this es-
timator cannot be used directly: some smoothness-adaptive technique, like Lepski’s method
(see Lepski et al. (1997)) can be applied. However, this estimator is considered here for
theoretical purposes only, and note that even in the white noise model, the problem of sharp
adaptive estimation in sup norm over Hölder classes remains open when s > 1.

4. Construction of an estimator

The estimator bf
n

described below uses both kernel and local polynomial methods. Its
construction is divided into two parts: first, at some well-chosen discretization points, we
use a Nadaraya-Watson estimator with optimal kernel and a design data driven bandwidth.
This part of the estimator is used to attain the minimax constant. Then, between the
discretization points, the estimator is defined by a Taylor expansion where the derivatives
are estimated by local polynomial estimation. We define the empirical design sample dis-
tribution

µ̄
n

:=
1
n

n

X

i=1

�
X

i

,

where � is the Dirac mass, and for h > 0, x 2 [0, 1], we consider the intervals

I(x, h) :=

(

[x, x + h] when 0 6 x 6 1/2,

[x� h, x] when 1/2 < x 6 1.
(4.1)

The choice of non-symmetrical intervals allows to skip boundaries e↵ects. Then we define,
when it makes sense, the ”bandwidth” at x by

H
n

(x) := argmin
h2[0,1]

n

h s.t. h2sµ̄
n

(I(x, h)) > log n/n
o

, (4.2)
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which makes the balance between the bias hs and the variance [log n/(nµ̄
n

(I))]1/2 of the
kernel estimator. When the event in (4.2) is empty (which occurs with a very small prob-
ability for large n), we take simply H

n

(x) := max(1 � x, x). We consider the sequence of
points

x
j

:= j�
n

, �
n

:= (log n)�2s/(2s+1)n�1/(2s+1), (4.3)

for j 2 J
n

:= {0, . . . , [��1
n

]} where [a] is the integer part of a with x
M

n

= 1, M
n

= |J
n

| (the
notation |A| stands also for the size of a finite set A). We define HM

n

:= max
j2J

n

H
n

(x
j

).
From Leonov (1997, 1999) we know that the function '

s

defined by (2.4) is even and
compactly supported. We denote by [�T

s

, T
s

] its support and ⌧
n

:= min(2c
s

T
s

HM

n

, �
n

)
where �

n

= (log n)�1 and c
s

is given by (3.7).
As usual with the estimation of a function over an interval, there is a boundary correction.

We decompose the unit interval into three parts [0, 1] = J
n,1[J

n,2[J
n,3 where J

n,1 := [0, ⌧
n

],
J

n,2 := [⌧
n

, 1 � ⌧
n

] and J
n,3 := [1 � ⌧

n

, 1]. We also define J
a,n

:= {j|x
j

2 J
a,n

} for
a 2 {1, 2, 3}. If '

s

is defined by (2.4), we consider the kernel

K
s

:= '
s

/
R

'
s

. (4.4)

The ”sharp” part of the estimator is defined as follows: at the points x
j

, we define bf
n

by

bf
n

(x
j

) :=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1
nH

n

(x
j

)

n

X

i=1

Y
i

K
s

⇣ X
i

� x
j

c
s

H
n

(x
j

)

⌘

max
h

�
n

,
1

nH
n

(x
j

)

n

X

i=1

K
s

⇣ X
i

� x
j

c
s

H
n

(x
j

)

⌘i

if j 2 J2,n

,

f̄
n

(x
j

) if j 2 J1,n

[ J3,n

.

(4.5)

This estimator is (up to the correction near the boundaries) a Nadaraya-Watson estimator
with the optimal kernel K

s

and a bandwidth fitted to the local amount of data. The
boundary estimator f̄

n

is defined below.
We recall that k = bsc where s is the smoothness of the unknown signal f . For any

interval I ⇢ [0, 1] such that µ̄
n

(I) > 0, we define the inner product

hf , gi
I

:=
1

µ̄
n

(I)

Z

I

fg dµ̄
n

,

where
R

I

f dµ̄
n

=
P

X

i

2I

f(X
i

)/n. If I = I(x, h) (see (4.1)), we define �
I,m

(y) := (y � x)m

and we introduce the matrix X
I

and vector Y
I

with entries

(X
I

)
p,q

:= h�
I,p

, �
I,q

i
I

and (Y
I

)
p

:= hY , �
I,p

i
I

,

for 0 6 p, q 6 k. Then, we consider

X̄
I

:= X
I

+
1

p

nµ̄
n

(I)
I
k+1 1⌦c

n,I

,

where ⌦
n,I

:=
�

�(X
I

) > (nµ̄
n

(I))�1/2
 

, where �(M) is the smallest eigenvalue of a matrix
M and where I

k+1 is the identity matrix on Rk+1. Note that the correction term in X̄
I

entails �(X̄
I

) > (nµ̄
n

(I))�1/2. When µ̄
n

(I) > 0, the solution b✓
I

of the system

X̄
I

✓ = Y
I

,

is well defined. If µ̄
n

(I) = 0, we take b✓
I

= 0. Then, for any 1 6 m 6 k, a natural estimate
of f (m)(x

j

) is
ef (m)
n

(x
j

) := m!(b✓
I(x

j

,h

n

))m

,



SHARP ESTIMATION WITH RANDOM DESIGN 7

where h
n

:= (�/L)2/(2s+1)(log n/n)1/(2s+1). The boundary estimator is given by f̄
n

(x
j

) :=
(b✓

I(x
j

,t

n

))0, where t
n

:= (�/L)2/(2s+1)n�1/(2s+1). If we define

�
n,I

:=
�

min
16m6k

k�
I,m

k
I

> n�1/2
 

, (4.6)

where k · k2
I

= h· , ·i
I

, then for x 2 [x
j

, x
j+1), j 2 J

n

, we take

bf
n

(x) := bf
n

(x
j

) +
⇣

k

X

m=1

ef (m)
n

(x
j

)
m!

(x� x
j

)m

⌘

1�
n,I(x

j

,h

n

)
. (4.7)

5. Proof of theorem 1

The whole section is dedicated to the proof of theorem 1. We denote by X
n

the sigma-
algebra generated by X1, . . . , Xn

and by Pn

µ

the joint law of X1, . . . , Xn

. We recall that the
discretization points x

j

are given by (4.3). We introduce

h
n,µ

(x) := [log n/(nµ(x))]1/(2s+1),

and it is convenient to introduce for j 2 J
n

: H
j

:= H
n

(x
j

), h
j

:= h
n,µ

(x
j

), µ
j

:= µ(x
j

) and
r
j

:= r
n,µ

(x
j

).

Step 1: approximation by the discretized risk. We introduce the uniform risk

E
n,f

:= sup
x2[0,1]

r
n,µ

(x)�1| bf
n

(x)� f(x)|,

and its discretized version E�
n,f

:= sup
j2J

n

r�1
j

| bf
n

(x
j

) � f(x
j

)|. In view of assumption D,
we have µ(·)s/(2s+1) 2 ⌃(s⌫/(2s + 1), %s/(2s+1)), thus

sup
x2[x

j

,x

j+1]
|r

n,µ

(x)�1 � r�1
j

| 6 r�1
j

�

%/q
�

s/(2s+1)�s⌫/(2s+1)
n

= o(1)r�1
j

. (5.1)

Since f 2 ⌃Q(s, L), writing the Taylor expansion of f at x 2 [x
j

, x
j+1], we obtain:

| bf
n

(x)� f(x)| 6 | bf
n

(x
j

)� f(x
j

)|+
k

X

m=1

( ef (m)
n

(x
j

)� f (m)(x
j

))
(x� x

j

)m

m!
+ L�s

n

,

and in view of (5.1):

E
n,f

6 (1 + o(1))
⇣

E�
n,f

+ max
j2J

n

r�1
j

k

X

m=1

| ef (m)
n

(x
j

)� f (m)(x
j

)|�
m

n

m!

⌘

+ O(�s

n

),

where we recall that �
n

= (log n)�1. In this step, we need the following lemma, which
provides a control over the local polynomial estimator uniform risk. Its proof is given below
in the section.

Lemma 1. There is an event C
n

2 X
n

such that, under assumption D,

Pn

µ

�

Cc

n

 

6 exp
�

�DCn
s/(2s+1)

�

, (5.2)

where DC > 0, and a centered Gaussian vector W 2 R(k+1)M
n with

En

f,µ

{W 2
p

} = 1, 0 6 p 6 (k + 1)M
n

,

such that on C
n

, one has for any 0 6 m 6 k and f 2 ⌃(s, L):

max
j2J

n

| ef (m)
n

(x
j

)� f (m)(x
j

)| = O(hs�m

n

)(1 + (log n)�1/2WM ), (5.3)
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where WM := max06p6(k+1)M
n

|W
p

|. For the estimator near the boundaries, we have on
C

n

, for a = 1 (the case a = 3 is similar):

max
j2J1,n

|f̄
n

(x
j

)� f(x
j

)| = O(ts
n

)(1 + W (1)), (5.4)

where W (1) = max06p6(k+1)|J1,n

| |Wp

|.

In view of (5.3), we have on C
n

, for any 1 6 m 6 k:

max
j2J

n

r�1
j

| ef (m)
n

(x
j

)� f (m)(x
j

)|�m

n

/m! = O(�m

n

)(1 + (log n)�1/2WM ),

then,
E

n,f

1C
n

6 (1 + o(1))E�
n,f

1C
n

+ O(�
n

)(1 + �1/2
n

WM ) + o(1).

Let us define the event W
n

:= {|WM �En

f,µ

{WM}| 6 ��1
n

}. Since W is a centered Gaussian
vector such that En

f,µ

{W 2
p

} = 1 for 0 6 p 6 (k + 1)M
n

, it is well known (see for instance

in Ledoux and Talagrand (1991)) that En

f,µ

{WM} 6 [2 log((k + 1)M
n

)]1/2 = O(��1/2
n

) and

Pn

f,µ

{Wc

n

} 6 2 exp(���2
n

/2). (5.5)

Thus,
E

n,f

1C
n

\W
n

6 (1 + o(1))E�
n,f

1C
n

+ o(1). (5.6)

Step 2: some events study. In what follows, it is convenient to write K instead of K
s

,
and to introduce

K
ij

:= K[(X
i

� x
j

)/(c
s

h
j

)], K̄
ij

:= K[(X
i

� x
j

)/(c
s

H
j

)],

and q
j

:= nc
s

h
j

µ
j

, q̄
j

:= nc
s

H
j

µ
j

, where c
s

is given by (3.7). We introduce also

Q̄
j

:=
P

n

i=1K̄ij

, Q
j

:=
P

n

i=1Kij

, S
j

:=
P

n

i=1K̄
2
ij

,

and the events

A
n,j

:=
�

�

�Q̄
j

/q̄
j

� 1
�

� 6 L
A

�min(s,1)
n

 

, B
n,j

:=
�

�

�Q
j

/q
j

� 1
�

� 6 �
n

 

,

C
n,j

:=
�

|H
j

/h
j

� 1| 6 �
n

 

, E
n,j

:=
�

�

�S
j

/q
j

� kKk2
2

�

� 6 L
E

�min(s,1)
n

 

,

B
n

:=
T

j2J2,n

�

A
n,j

\ B
n,j

\ E
n,j

�

\
T

j2J
n

C
n,j

, (5.7)

where L
A

and L
E

are some fixed positive constants, �
n

= (log n)�1, and the sets of indices
J

a,n

are defined in section 4. In this step, we control the probabilities of these events.
For j 2 J2,n

, we consider the sequence of i.i.d variables ⇣
ij

:= K
ij

� En

µ

{K
ij

}, 1 6 i 6 n.
Since µ 2 ⌃

q

(⌫, %) and
R

K = 1, we have for n large enough |En

µ

{K1j

}/q
j

� 1| 6 �
n

/2, thus
Bc

n,j

⇢
�

|
P

n

i=1 ⇣ij |/q
j

6 �
n

/2
 

. Since |⇣
ij

| 6 2kKk1 and
P

n

i=1 En

µ

{⇣2
ij

} 6 (1 + �
n

)q
j

R

K2

for n large enough, Bernstein inequality entails

Pn

µ

{Bc

n,j

} 6 2 exp(�D1�
2
n

n2s/(2s+1)) (5.8)

for any j 2 J2,n

, where D1 is a positive constant. Since '
s

2 ⌃(s, 1; R), we have K 2
⌃(min(s, 1), L

K

; R) where L
K

:= (
R

'
s

)�1 if 0 < s 6 1 and L
K

:= kK 0k1 if s > 1. Since
Supp K = [�T

s

, T
s

], we have on C
n,j

|K̄
ij

�K
ij

| 6 L
K

Tmin(s,1)
s

⇣ �
n

1� �
n

⌘min(s,1)
1M

ij

= o(1)1M
ij

, (5.9)

where M
ij

:= {|X
i

� x
j

| 6 c
s

T
s

(1 + �
n

)h
j

}. We define ⌘
ij

:= 1M
ij

� Pn

µ

{M
ij

}. On C
n,j

we
have for n large enough 2c

s

T
s

HM

n

6 �
n

, and since x
j

2 [⌧
n

, 1� ⌧
n

],

x
j

6 1� ⌧
n

= 1� 2c
s

T
s

HM

n

6 1� 2c
s

T
s

H
j

6 1� 2c
s

T
s

(1� �
n

)h
j

6 1� c
s

T
s

(1 + �
n

)h
j
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for n large enough. On the other hand we have similarly x
j

> c
s

T
s

(1 + �
n

)h
j

. Thus, since
µ 2 ⌃

q

(⌫, %) we have
�

�

�

Pn

µ

{M1j

}
(1 + �

n

)c
s

h
j

µ
j

� 2T
s

�

�

�

6 1
q

Z

|y|6T

s

|µ(x
j

+ c
s

y(1 + �
n

)h
j

)� µ
j

|dy = O(h⌫

n

).

Since x
j

2 [c
s

T
s

(1 + �
n

)h
j

, 1 � (1 + �
n

)c
s

T
s

h
j

] ⇢ [c
s

T
s

h
j

, 1 � c
s

T
s

h
j

], we have for n large
enough that on C

n,j

,
�

�

�

En

f,µ

{K1j

}
c
s

H
j

µ
j

� 1
�

�

�

6 h
j

H
j

µ
j

Z

|K(y)||µ(x
j

+ yc
s

h
j

)� µ
j

|dy +
�

�

�

h
j

H
j

� 1
�

�

�

6 O(h⌫

n

) +
�
n

1� �
n

.

Then, we obtain that on C
n,j

and for n large enough,
�

�

�

P

n

i=1 K̄
ij

q̄
j

� 1
�

�

�

6 o(1)
q̄
j

|
n

X

i=1

⌘
ij

|+ L
K

(T
s

�
n

)min(s,1)

(1� �
n

)min(s,1)

Pn

µ

{M1j

}
c
s

H
j

µ
j

+
1
q̄
j

|
n

X

i=1

⇣
ij

|+ O(h⌫

n

) +
�
n

1� �
n

6 o(1)
q
j

|
n

X

i=1

⌘
ij

|+ 1 + o(1)
q
j

|
n

X

i=1

⇣
ij

|+ 2(2L
K

Tmin(s,1)+1 + 1)�min(s,1)
n

,

and taking L
A

:= 4(L
K

Tmin(s,1)+1 + 1), we obtain

Pn

f,µ

{Ac

n,j

\ C
n,j

} 6 Pn

µ

�

|
n

X

i=1

⌘
ij

| > �min(s,1)
n

q
j

 

+ Pn

µ

{|
n

X

i=1

⇣
ij

| > �min(s,1)
n

q
j

/2}.

Then, applying Bernstein inequality to the sum of variables ⌘
ij

and ⇣
ij

, 1 6 i 6 n, we
obtain that for any j 2 J

n,2,

Pn

µ

{Ac

n,j

\ C
n,j

} 6 2 exp(�D2�
2
2,n

n2s/(2s+1)), (5.10)

where D2 is a positive constant and �2,n

:= �min(s,1)
n

. We can prove

Pn

µ

{Ec

n,j

\ C
n,j

} 6 2 exp(�D3�
2
2,n

n2s/(2s+1)), (5.11)

where D3 is a positive constant in the same way as for the proof of (5.10), with an appro-
priate choice for L

E

. If I = I(x, h) (see (4.1)) and �1,n

:= 1� (1 + �
n

)�(2s+1), we define the
event

N
n,I

:=
n

�

�

�

µ̄
n

(I)
µ(x)h

� 1
�

�

�

6 �1,n

o

. (5.12)

From the definitions of H
j

and h
j

, we obtain

{(1� �
n

)h
j

< H
j

} =
�

(1� �
n

)2sh2s

j

< log n/
�

nµ̄
n

(I(x
j

, (1� �
n

)h
j

))
� 

=
n µ̄

n

(I(x
j

, (1� �
n

)h
j

))
µ

j

(1� �
n

)h
j

6 (1� �
n

)�(2s+1)
o

,

and then N
n,I(x

j

,(1��

n

)h
j

) ⇢ {(1� �
n

)h
j

< H
j

}. We can prove in the same way that on the
other hand N

n,I(x
j

,(1+�

n

)h
j

) ⇢ {(1 + �
n

)h
j

> H
j

}, hence

N
n,I(x

j

,(1��

n

)h
j

) \N
n,I(x

j

,(1+�

n

)h
j

) ⇢ C
n,j

. (5.13)

If I = I(x, h), we have in view of assumption D that |
R

I

µ(t)dt � hµ(x)|= O(h⌫+1), thus,
if Z

i

:= 1
X

i

2I

�
R

I

µ(t)dt, we have {|
P

n

i=1 Z
i

|6 nµ(x)h�
n,1/2} ⇢ N

n,I

for n large enough.
Then, using Bernstein inequality to the sum of Z

i

, 1 6 i 6 n, we obtain

Pn

µ

{Cc

n,j

} 6 2 exp(�D
C

�21,n

n2s/(2s+1)),

for n large enough, where D
C

> 0 is fixed. Using together the previous inequalities, we
obtain

Pn

µ

{Bc

n

} 6 exp(�DBns/(2s+1)) (5.14)
for n large enough, where DB > 0 is fixed.
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Step 3: controls on E�
n,f

. We need the following lemma, which is proven below in the
section.

Lemma 2. There is an event A
n

2 X
n

such that, under assumption D,

Pn

µ

{Ac

n

} 6 exp(�DAns/(2s+1)) (5.15)

for n large enough, where DA > 0 and such that

A
n

⇢ B
n

\ C
n

\ �
n

, (5.16)

where B
n

is given by (5.7), C
n

by lemma 1 and �
n

:=
T

j2J
n

�
n,I(x

j

,h

n

) where �
n,I

is defined
by (4.6).

In this step, we prove that for any " > 0, when n is large enough, the following inequality
holds:

sup
f2⌃Q(s,L)

Pn

f,µ

{E�
n,f

1A
n

> (1 + ")P} 6 exp
�

�DE "(1 ^ ")(log n)2s/(2s+1)
�

, (5.17)

where DE > 0, and we prove that

sup
f2⌃Q(s,L)

En

f,µ

�

w2(E�
n,f

1A
n

)
 

= O(1). (5.18)

We decompose the risk into

E�
n,f

= E�,1
n,f

+ E�,2
n,f

+ E�,3
n,f

, (5.19)

where E�,a

n,f

:= sup
j2J

a,n

r�1
j

| bf
n

(x
j

) � f(x
j

)|. For a = 1 and a = 3, E�,a

n,f

is the risk at the

boundaries of [0, 1]. Since on B
n

, Q̄
j

/q̄
j

> 1 � L
A

�min(s,1)
n

> �
n

for n large enough, the
denominator in (4.5) is larger than �

n

. Hence, we can decompose on B
n

the middle risk into
bias and variance terms as follows:

E�,2
n,f

6 b
n,f

+ U
n,f

+ Z
n

, (5.20)

where the variance term is given by

Z
n

:= max
j2J2,n

|Z
n,j

|, Z
n,j

:= r�1
j

P

n

i=1 ⇠iWij

,

with W
ij

:= K̄
ij

/Q̄
j

, and the bias terms are

b
n,f

:= max
j2J2,n

|b
n,f,j

|, U
n,f

:= max
j2J2,n

|U
n,f,j

|,

where b
n,f,j

:= En

f,µ

{B
n,f,j

1B
n

}, U
n,f,j

:= B
n,f,j

� b
n,f,j

with B
n,f,j

:= r�1
j

P̄
j

/Q̄
j

, P̄
j

:=
P

n

i=1(f(X
i

)� f(x
j

))K̄
ij

. We use the three following inequalities: we have

limsup
n

sup
f2⌃(s,L)

b
n,f

6 Lcs

s

B(s, 1), (5.21)

where B(s, L) is defined by (3.6), and there is a constant D
U

> 0 such that for any " > 0,

sup
f2⌃(s,L)

Pn

f,µ

�

U
n,f

1B
n

> "
 

6 exp
�

�D
U

"(1 ^ ")n2s/(2s+1)
�

. (5.22)

Moreover, we have for any " > 0,

sup
f2⌃Q(s,L)

Pn

f,µ

�

Z
n

1B
n

> (1 + ")Lcs

s

kKk2
 

6 2(log n)2s/(2s+1)n�"/(2s+1). (5.23)

We prove these inequalities below in the section. In view of (5.21), we have b
n,f

6 (1 +
2")Lcs

s

B(s, 1) for n large enough, and using (3.8) we obtain

{E�,2
n,f

1B
n

> (1 + 2")P} ⇢ {Z
n

1B
n

> (1 + ")Lcs

s

kKk2} [ {U
n,f

1B
n

> "Lcs

s

kKk2}.
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Then, in view of (5.22) and (5.23), it is easy to find D2 > 0 such that uniformly for
f 2 ⌃Q(s, L) and n large enough,

Pn

f,µ

�

E�,2
n,f

1B
n

> (1 + 2")P
 

6 exp
�

�D2 "(1 ^ ") log n
�

. (5.24)

Now, we consider the boundary risk E�,1
n,f

(the result is the same for E�,3
n,f

). In view of (5.4),
we obtain

E�,1
n,f

1C
n

= O(�s/(2s+1)
n

)(1 + W (1)),

and we have as previously En

f,µ

{W (1)} = O((log log n)1/2), since |J1,n

| = O(log n), and for
any � > 0,

Pn

f,µ

�

W (1) � En

f,µ

{W (1)} > �
 

6 2 exp(��2/2).

Then, for some D3 > 0, we obtain when n is large enough

Pn

f,µ

�

E�,1
n,f

1C
n

> 2"P
 

6 2 exp
�

�D3"
2��2s/(2s+1)

n

�

.

This inequality, together with (5.24) and the fact that A
n

⇢ B
n

\ C
n

(see lemma 2) en-
tails (5.17). To prove (5.18), since w(x) 6 A(1 + |x|b), it su�ces to use (5.17) and the fact
that En

f,µ

{(E�
n,f

)p1A
n

} = p
R +1
0 tp�1Pn

f,µ

{E�
n,f

1A
n

> t}dt for any p > 0.

Step 4: conclusion of the proof. We need the following inequality, which is proven
below in the section:

sup
f2⌃Q(s,L)

En

f,µ

�

w2(E
n,f

)
 

= O
�

n2b(1+s/(2s+1))
�

. (5.25)

Since w(·) is nondecreasing, we have for any " > 0

En

f,µ

{w(E
n,f

)} 6 En

f,µ

{w(E
n,f

)1A
n

\W
n

}+ En

f,µ

{w(E
n,f

)1Ac

n

[Wc

n

}

6 w((1 + 2")P ) +
�

En

f,µ

{w2(E
n,f

)}Pn

f,µ

{Ac

n

[Wc

n

}
�1/2

+
�

En

f,µ

�

w2
�

(1 + 2")E�
n,f

1A
n

� 

Pn

f,µ

{E�
n,f

1A
n

> (1 + ")P}
�1/2

6 w((1 + 2")P ) + O
�

nb(1+s/(2s+1)) exp(�(log n)2/4)
�

+ O
�

exp(�DE "(1 ^ ")(log n)2s/(2s+1))
�

= w((1 + 2")P ) + o(1),

where we used together lemma 2, equations (5.5), (5.17), (5.18), (5.25), and the fact that
w(·) is continuous. Thus,

limsup
n

sup
f2⌃Q(s,L)

En

f,µ

{w(E
n,f

)} 6 w((1 + 2")P ),

which concludes the proof of theorem 1 since " can be chosen arbitrarily small. ⇤

The proofs of several technical inequalities have been postponed all along the proof of
theorem 1. We give the proofs of these results in what follows. Since b

n,f

and U
n,f

only
depend on f via its values in [0, 1], we have

sup
f2⌃(s,L)

b
n,f

= sup
f2⌃(s,L;R)

b
n,f

, sup
f2⌃(s,L)

U
n,f

= sup
f2⌃(s,L;R)

U
n,f

. (5.26)
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Proof of (5.21). On A
n,j

\ C
n,j

we have (1 � o(1))q
j

6 Q̄
j

6 (1 + o(1))q
j

and since
B

n

⇢ A
n,j

\ C
n,j

for any j 2 J2,n

, we have

|b
n,f,j

| = r�1
j

|En

f,µ

{(P̄
j

/Q̄
j

)1B
n

}| 6 (1 + o(1))(r
j

q
j

)�1|En

f,µ

{P̄
j

1B
n

}|.

Using (5.9), and introducing ⌫
f,j

(x) := 1
f(x)>f(x

j

) � 1
f(x)<f(x

j

), P
j

:=
P

n

i=1(f(X
i

) �
f(x

j

))K
ij

, R
ij

:= ⌫
f,j

(X
i

)(f(X
i

)� f(x
j

))1M
ij

and R
j

:=
P

n

i=1 R
ij

, we obtain

1
r
j

q
j

|En

f,µ

{P̄
j

1B
n

}
�

� 6 1
r
j

q
j

�

|En

f,µ

{P
j

}|+ o(1)|En

f,µ

{R
j

}|
�

6 1
r
j

µ
j

⇣

�

�

Z

(f(x
j

+ yc
s

h
j

)� f(x
j

))K(y)µ(x
j

+ yc
s

h
j

)dy
�

�

+ o(1)
�

�

Z

|y|6(1+�

n

)T
s

(f(x
j

+ yc
s

h
j

)� f(x
j

))⌫
f,j

(x
j

+ c
s

yh
j

)µ(x
j

+ yc
s

h
j

)dy
�

�

⌘

,

and since µ 2 ⌃
q

(⌫, %) we have

b
n,f,j

6 1 + o(1)
r
j

�

�

Z

(f(x
j

+ yc
s

h
j

)� f(x
j

))K(y)dy
�

�

+
o(1)
r
j

q

Z

|y|62T

s

|f(x
j

+ yc
s

h
j

)� f(x
j

)|dy.

Using (5.26) and the fact that ⌃(s, L; R) is invariant by translation,

sup
f2⌃(s,L;R)

b
n,f,j

6 (1 + o(1)) sup
f2⌃(s,L;R)

max
j2J2,n

1
r
j

⇣

�

�

Z

(f(c
s

h
j

y)� f(0))K(y)dy
�

�

+ o(1)
Z

|y|62T

|f(c
s

h
j

y)� f(0)|dy
⌘

.

Now we use an argument which is known as renormalisation, see Donoho and Low (1992).
We introduce the functional operator U

a,b

f(·) := af(b ·). We have that f 2 ⌃(s, L; R) is
equivalent to U

a,b

f 2 ⌃(s, Labs; R). Then, choosing a = (Lcs

s

hs

j

)�1 and b = c
s

h
j

entails

sup
f2⌃(s,L;R)

b
n,f

6 (1 + o(1))Lcs

s

B(s, 1) + o(1),

and the result follows. ⇤

Proof of (5.22). We recall that U
n,f,j

= B
n,f,j

� En

f,µ

{B
n,f,j

1B
n

}. We use the same
notations as in the proof of (5.21). On B

n

we have (1 � o(1))q
j

6 Q̄
j

6 (1 + o(1))q
j

, and
since En

f,µ

{P̄ 2
j

} = O(n2), we obtain in view of lemma 2 that |En

f,µ

{P̄
j

1Bc

n

}|/(r
j

q
j

) = o(1).
Then on B

n

,

|U
n,f,j

| 6 1
r
j

q
j

⇣

(1 + o(1))
�

�P̄
j

� En

f,µ

{P̄
j

}
�

�+ o(1)
�

�En

f,µ

{P̄
j

1B
n

}
�

�

⌘

+ o(1),

and we know from the proof of (5.21) that |En

f,µ

{P̄
j

1B
n

}|/(r
j

q
j

) = O(1), thus

|U
n,f,j

| 6 (1 + o(1))(r
j

q
j

)�1|P̄
j

� En

f,µ

{P̄
j

}|+ o(1)

on B
n

. Using (5.9) we obtain that on B
n

,

|P̄
j

� En

f,µ

{P̄
j

}| 6 |P
j

� En

f,µ

{P
j

}|+ o(1)|R
j

� En

f,µ

{R
j

}|+ o(1)|En

f,µ

{R
j

}|,

and again from the proof of (5.21), we know that (r
j

q
j

)�1|En

f,µ

{R
j

}| = O(1). Then, if
�

j

:= "r
j

q
j

/3, we have for n large enough

Pn

f,µ

{|U
n,f,j

|1B
n

> "} 6 Pn

f,µ

�

|P
j

� En

f,µ

{P
j

}| > �
j

 

+ Pn

f,µ

�

|R
j

� En

f,µ

{R
j

}| > �
j

 

.
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We use Bernstein inequality to the sum of variables P
ij

� En

f,µ

{P
ij

} and R
ij

� En

f,µ

{R
ij

},
1 6 i 6 n. These variables are independent and centered. We have |P

ij

� En

f,µ

{P
ij

}| 6
4QK1, and with the same arguments as at the end of the proof of (5.21) we obtain

P

n

i=1 En

f,µ

{(P
ij

� En

f,µ

{P
ij

})2} = O(r2
j

q
j

).

Then, using Bernstein inequality, we can find D4 > 0 such that for n large enough

Pn

f,µ

{|P
j

� En

f,µ

{P
j

}| > �
j

} 6 2 exp(�D4"(1 ^ ")ns/(2s+1)).

We can prove likewise the same inequality for R
j

�En

f,µ

{R
j

}, with some di↵erent constant
D4 > 0. Since |J2,n

| 6 M
n

and M
n

exp(�Dns/(2s+1)/2) ! 0 as n ! +1 for any D > 0,
the result follows with an appropriate constant D

U

> 0. ⇤
Proof of (5.23). Conditionally on X

n

, Z
n,j

is centered Gaussian with variance v2
j

:=
�2r�2

j

P

n

i=1 W 2
ij

. On B
n

, we have for any j 2 J2,n

and n large enough
n

X

i=1

W 2
ij

=
S

j

(Q̄
j

)2
6 (1 + o(1))

kKk2
2

q
j

6 (1 + ")
kKk2

2r
2
j

c
s

log n
,

where we used the definition of h
n,µ

(x), hence v2
j

6 (1 + ")�2kKk2
2/(c

s

log n). Using the
fact that P (|N(0, v2)| > �) 6 2 exp(��2/(2v2)), we obtain

Pn

f,µ

{|Z
n,j

|1B
n

> (1 + ")Lcs

s

kKk2} 6 2 exp
⇣

� (1 + ")
2s + 1

log n
⌘

= 2n�(1+")/(2s+1),

and the result follows, since |J2,n

| 6 M
n

6 (log n)2s/(2s+1)n1/(2s+1). ⇤

Proof of (5.25). We prove that for any p > 0,

sup
f2⌃Q(s,L)

En

f,µ

{Ep

n,f

} = O(np(1+s/(2s+1))), (5.27)

which entails (5.25). By definition of H
n

(x), we have H
n

(x) > (log n/n)1/(2s) for any
x 2 [0, 1]. Since kfk1 6 Q, we have for any j 2 J2,n

,

| bf
n

(x
j

)| 6 ��1
n

(n/ log n)1/(2s)kK
s

k1(Q + |⇠̄
n

|/
p

n),

where ⇠̄
n

=
P

n

i=1 ⇠i/
p

n is standard Gaussian. Then,

En

f,µ

�

| bf
n

(x
j

)|p|X
n

 

6 ��p

n

(n/ log n)p/(2s)(Q _ 1)pkK
s

kp

1En

f,µ

{(1 + |⇠̄
n

|)p|X
n

}

= O(np/(2s)(log n)p(1�1/(2s))).

We need the following lemma (its proof is given below).

Lemma 3. For any interval I ⇢ [0, 1] and p > 0 we have

En

f,µ

�

|(b✓
I

)0|p|Xn

 

= O(np/2).

Moreover, for any 1 6 m 6 k, we have on �
n,I

(see section 4)

En

f,µ

�

|(b✓
I

)
m

|p|X
n

 

= O(np).

When j 2 J
n,1 [ Jn,3, we have bf

n

(x
j

) = (b✓
I(x

j

,t

n

))0, thus En

f,µ

�

| bf
n

(x
j

)|p|X
n

 

= O(np/2)

in view of lemma 3. For any j 2 J
n

, since ef (m)
n

(x
j

) = m!(b✓
I(x

j

,h

n

))m

, we have in view of
lemma 3 that on �

n,I(x
j

,h

n

), En

f,µ

�

| ef (m)
n

(x
j

)|p|X
n

 

= O(np) for any 1 6 m 6 k. Then, we
have for any kfk1 6 Q

E
n,f

= O((n/ log n)s/(2s+1))
�

sup
x2[0,1]

| bf
n

(x)|+ Q
�

,
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and since

sup
x2[0,1]

| bf
n

(x)| 6 max
j2J

n

⇣

| bf
n

(x
j

)|+
�

k

X

m=1

| ef (m)
n

(x
j

)|
m!

�

1�
n,I(x

j

,h

n

)

⌘

= O(np),

we obtain (5.27) and (5.25). ⇤

Now, it remains to prove lemmas 1, 2 and 3. We need to introduce some notations.
We consider the diagonal matrix ⇤

I

with entries (⇤
I

)
m,m

= k�
I,m

k�1
I

for 0 6 m 6 k,
where k · k2

I

:= h· , ·i
I

(see section 4), the matrix G
I

:= ⇤
I

X̄
I

⇤
I

, where X̄
I

is introduced
in section 4 and the matrix G with entries (G)

p,q

:= �
p+q

/(�2p

�2q

)1/2, for 0 6 p, q 6 k,
where �

m

:= (1 + (�1)m)/(2(m + 1)). Note that �(G) > 0, where we recall that �(M) is
the smallest eigenvalue of a matrix M . We define the events

⌦
n

:=
T

j2J
n

⌦
n,I(x

j

,h

n

) \ ⌦
n,I(x

j

,t

n

), L
n

:=
T

j2J
n

L
n,I(x

j

,h

n

) \ Ln,I(x
j

,t

n

),

where ⌦
n,I

, I(x, h), h
n

and t
n

are defined in section 4 and where, if I = I(x, h),

L
n,I

:= {|�(G
I

)� �(G)| 6 �
n

}.
For 0 6 m 6 2k, an interval I ⇢ [0, 1], and � > 0, we define

D̄
n,m,I,�

:=
n

�

�

1
µ̄

n

(I)|I|m

Z

I

�
I,m

dµ̄
n

� �
m

�

� 6 �
o

,

and D
n

:=
T2k

m=0

T

j2J
n

D̄
n,m,I(x

j

,h

n

),�
n

\ D̄
n,m,I(x

j

,t

n

),�
n

. For N
n,I

given by (5.12), we define

N
n

:=
T

j2J
n

N
n,I(x

j

,h

n

) \N
n,I(x

j

,t

n

),

and we introduce
C

n

:= ⌦
n

\ L
n

\D
n

\N
n

. (5.28)
This event is used within lemma 1 above, where a control on its probability is given. We
recall that �

n

is defined in lemma 2.
To a vector ✓ 2 Rk+1 we associate the polynomial P

✓

(y) := ✓0+✓1y+· · ·+✓
k

yk. If b✓
I

is the
solution of the system X̄

I

✓ = Y
I

(see section 4) for I = I(x, h), we define bf
I

(y) := Pb
✓

I

(y�x).
If V

I,k

:= Span{�
I,m

; 0 6 m 6 k}, we note that on ⌦
n,I

, bf
I

satisfies

h bf
I

, �i
I

= hY , �i
I

, 8� 2 V
I,k

. (5.29)

By definition, we have ef (m)
n

(x
j

) = bf (m)
I(x

j

,h

n

)(xj

), where bf (m)
I

is the derivative of order m of
bf
I

, and f̄
n

(x
j

) = bf
I(x

j

,t

n

)(xj

), see section 4. We recall that M
n

is the cardinal of J
n

.

Proof of lemma 1. We take I = I(x, h) for some x 2 [0, 1], h > 0 and define the vector
✓
I

with coordinates (✓
I

)
m

= f (m)(x)/m! for 0 6 m 6 k. Since X̄
I

= X
I

on ⌦
n,I

, we have
⇤�1

I

(b✓
I

� ✓
I

) = G�1
I

⇤
I

X
I

(b✓
I

� ✓
I

). If f
I

(y) = P
✓

I

(y� x), we have in view of (5.29) for any
0 6 m 6 k:

(X
I

(b✓
I

� ✓
I

))
m

= h bf
I

� f
I

, �
I,m

i
I

= hY � f
I

, �
I,m

i
I

= hf � f
I

, �
I,m

i
I

+ h⇠ , �
I,m

i
I

,

thus X
I

(b✓
I

� ✓
I

) := B
I

+ V
I

. Since f 2 ⌃(s, L),

(⇤
I

B
I

)
m

6 k�
I,m

k�1
I

|hf � f
I

, �
I,m

i
I

| 6 kf � f
I

k
I

6 Lhs/k!,

then we can write

⇤�1
I

(b✓
I

� ✓
I

) = G�1
I

Lhs

k!
u +

�
p

nµ̄
n

(I)
G�1/2

I

�
I

,

where u 2 Rk+1 is such that kuk1 6 1 and �
I

= (�
p

nµ̄
n

(I))�1G�1/2
I

⇤
I

D
I

⇠ =: T
I

⇠,
where D

I

is the matrix of size nµ̄
n

(I)⇥ (k + 1) with entries (D
I

)
i,m

= (X
i

� x)m, so that
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X
I

= (nµ̄
n

(I))�1D0
I

D
I

. Since T0
I

T
I

= ��1I
k+1, we obtain that �

I

is, conditionally on X
n

,
centered Gaussian with covariance equal to I

k+1. Consider I = I(x
j

, h) for some j 2 J
n

,
h > 0. From the inequality k · k1 6 k · k 6

p
k + 1k · k1 and since kG�1/2

I

k 6
p

k + 1kG�1
I

k
(G

I

is symmetrical with entries smaller than 1 in absolute value) we get

k⇤�1
I

(b✓
I

� ✓
I

)k1 6 kG�1
I

Lhs

k!
uk1 +

�
p

nµ̄
n

(I)
kG�1/2

I

�
I

k1

6 kG�1
I

k(k + 1)
�

Lhs +
�

p

nµ̄
n

(I)
k�

I

k1
�

= ��1(G
I

)(k + 1)
�

Lhs +
�

p

nµ̄
n

(I)
max

06m6k

|W(k+1)j+m

|
�

,

where W := (�
I(x0,h), . . . , �I(x

M

n

,h))0. If T := (T
I(x0,h), . . . ,TI(x

M

n

,h))0 we have W = T⇠,
thus W is a centered Gaussian vector and for any (k + 1)j 6 m 6 (k + 1)j + k, j 2 J

n

we
have

En

f,µ

{W 2
m

} = (Var{W})
m,m

= (Var{�
I(x

j

,h)})m�(k+1)j,m�(k+1)j = 1,

since Var{�
I(x

j

,h)} = I
k+1. Then, we have proved that on \

j2J
n

⌦
n,I(x

j

,h),

max
j2J

n

k⇤�1
I(x

j

,h)(b✓I(x
j

,h) � ✓
I(x

j

,h))k1 6 ��1(G
I(x

j

,h))(k + 1)
�

Lhs +
�

p

nµ̄
n

(I(x
j

, h))
WM

�

,

where WM = max06m6(k+1)|J
n

| |Wm

|. Since C
n

⇢ N
n

\ ⌦
n

\ L
n

, we have on C
n

for h = h
n

or h = t
n

,

max
j2J

n

k⇤�1
I(x

j

,h)(b✓I(x
j

,h) � ✓
I(x

j

,h))k1 6 (1 + o(1))��1(G)(k + 1)
�

Lhs +
�

p

nhµ
j

WM

�

.

Since C
n

⇢ D
n

, we have for any j 2 J
n

, 0 6 m 6 k,

C
n

⇢ D̄
n,2m,I(x

j

,h

n

),�
n

\ D̄
n,2m,I(x

j

,t

n

),�
n

,

thus on C
n

, when h = h
n

or h = t
n

, we clearly have

(⇤
I(x

j

,h))m,m

= k�
I(x

j

,h),mk�1
I(x

j

,h) 6 (1 + o(1))h�m

p
2m + 1.

Since ef (m)
n

(x
j

)� f (m)(x
j

) = m!
�

(b✓
I(x

j

,h

n

))m

� (✓
I(x

j

,h

n

))m

�

, it follows that on C
n

:

| ef (m)
n

(x
j

)� f (m)(x
j

)| 6 (1 + o(1))��1(G)m!
p

2m + 1(k + 1)h�m

n

(Lhs

n

+
�

p

nh
n

µ
j

WM )

= O(hs�m

n

)(1 + (log n)�1/2WM ),

thus (5.3). Inequality (5.4) is obtained similarly, and (5.2) follows from lemma 2. ⇤

Proof of lemma 2. If I = I(x, h), we define the event

D
n,m,I,�

:=
n

�

�

�

1
µ(x)hm+1

Z

I

�
I,m

dµ̄
n

� �
m

�

�

�

6 �
o

.

Note that (5.13) entails

D
n,0,I(x

j

,(1��

n

)h
j

),�1,n

\D
n,0,I(x

j

,(1+�

n

)h
j

),�1,n

⇢ C
n,j

, (5.30)

where we recall that �1,n

:= 1� (1+�
n

)�(2s+1). First, we prove (5.16). If �3,n

= �
n

/(2��
n

),
we have for any interval I,

D
n,m,I,�3,n

\D
n,0,I,�3,n

⇢ D̄
n,m,I,�

n

.
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Using the fact that �(M) = infkxk=1hx , Mxi for any symmetrical matrix M and since G
I

,
G, X

I

are symmetrical, we obtain
\

06p,q6k

n

|(G
I

� G)
p,q

| 6 �
n

(k + 1)2
o

⇢ L
n,I

, (5.31)

and
2k

\

m=0

D̄
n,m,I,

�

n

(k+1)2
⇢

\

06p,q6k

n

�

�(X
I

�X)
p,q

�

� 6 �
n

(k + 1)2
o

⇢ {|�(X
I

)� �(X)| 6 �
n

}.

Recalling that if I = I(x
j

, h),

(G
I

)
p,q

=
h�

I,p

, �
I,q

i
I

k�
I,p

k
I

k�
I,q

k
I

=
1

µ

j

h

m+1

R

I

�
I,p+q

dµ̄
n

�

1
µ

j

h

m+1

R

I

�
I,2p

dµ̄
n

�1/2� 1
µ

j

h

m+1

R

I

�
I,2q

dµ̄
n

�1/2
,

we obtain for �4,n

= �
n

/
�

(2� �
n

)(2k + 1)(k + 1)2
�

,

D
n,2p,I,�4,n

\D
n,2q,I,�4,n

\D
n,p+q,I,�4,n

⇢
n

|(G
I

� G)
p,q

| 6 �
n

(k + 1)2
o

,

thus
2k

\

m=0

D
n,m,I,�4,n

⇢ L
n,I

,

and clearly for n large enough, if I = I(x
j

, h
n

) or I = I(x
j

, t
n

),
2k

\

m=0

D
n,m,I,�4,n

⇢ {|�(X
I

)� �(X)| 6 �
n

} \
n

�

�

�

µ̄
n

(I)
|I|µ

j

� 1
�

�

�

6 �
n

o

⇢ ⌦
n,I

. (5.32)

Moreover, if I = I(x
j

, h
n

), we have on D̄
n,2m,I,�

n

for any 1 6 m 6 k and n large enough,

k�
I,m

k
I

> (1� o(1))hm

n

p
2m + 1 > 1/

p
n. (5.33)

We define

D
n,m

:=
\

j2J
n

⇣

D
n,m,I(x

j

,h

n

),�5,n

\D
n,m,I(x

j

,t

n

),�5,n

\D
n,0,I(x

j

,(1��

n

)h
j

),�5,n

\D
n,0,I(x

j

,(1+�

n

)h
j

),�5,n

⌘

,

where �5,n

= �4,n

^ �3,n

^ �1,n

, D
n

:=
T2k

m=0 D
n,m

and we choose

A
n

:= D
n

\ B
n

.

In view of (5.30), (5.31), (5.32), (5.33) we have D
n

⇢ ⌦
n

\L
n

\D
n

\�
n

and since D
n,0,I,�

=
N

n,I

, we obtain D
n

⇢ C
n

\ �
n

, thus (5.16). Now, we prove (5.15). Since µ 2 ⌃(⌫, %), it is
easy to see that for I = I(x

j

, h
n

) or I = I(x
j

, t
n

) and n large enough,
�

�

�

En

µ

n 1
µ(x)|I|m+1

Z

I

�
I,m

dµ̄
n

o

� �
m

�

�

�

6 �5,n

/2.

Then, using Bernstein inequality, we obtain for n large enough, if h = h
n

, h = t
n

, h =
(1� �

n

)h
j

or h = (1 + �
n

)h
j

,

Pn

µ

{Dc

n,m,I(x
j

,h),�5,n

} 6 2 exp(�D4�
2
5,n

nh) 6 2 exp(�D5n
s/(2s+1)),

with D4, D5 positive constants, where we used the fact that �25,n

ns/(2s+1) > 1 for n large
enough and nh > D6n2s/(2s+1). Hence, together with (5.14), we obtain (5.15). ⇤
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Proof of lemma 3. If µ̄
n

(I) = 0 we have b✓
I

= 0 and the result is obvious, thus we assume
µ̄

n

(I) > 0. In this case, ⇤
I

, X̄
I

and G
I

are invertible, and by definition of b✓
I

,
b✓
I

= ⇤
I

⇤�1
I

b✓
I

= ⇤
I

G�1
I

⇤
I

X̄
I

b✓
I

= ⇤
I

G�1
I

⇤
I

Y
I

= ⇤
I

G�1
I

(B
I

+ V
I

),

where (B
I

)
m

= k�
I,m

k�1
I

hf , �
I,m

i
I

and (V
I

)
m

= k�
I,m

k�1
I

h⇠ , �
I,m

i
I

. Since kfk1 6 Q we
have |(B

I

)
m

| = k�
I,m

k�1
I

|hf , �
I,m

i
I

| 6 kfk
I

6 Q, thus kB
I

k1 6 Q.
Conditionally on X

n

, V
I

is centered Gaussian and it is an easy computation to see that
its covariance matrix is equal to �2(nµ̄

n

(I))�1⇤
I

X
I

⇤
I

. Then ⇤
I

G�1
I

V
I

is conditionally
on X

n

centered Gaussian with covariance matrix �2(nµ̄
n

(I))�1X̄�1
I

X
I

X̄�1
I

. If e
m

is the
canonical vector with coordinates (e

m

)
p

= 1
p=m

, we have

|(b✓
I

)
m

| = |hb✓
I

, e
m

i| = |h⇤
I

G�1
I

B
I

, e
m

i|+ �
p

k + 1 �,

where � = (�
p

k + 1)�1h⇤
I

G�1
I

V
I

, e
m

i. By definition, we have kX̄�1
I

k = ��1(X̄
I

) 6
p

nµ̄
n

(I), and clearly kX
I

k 6 k +1 and k⇤�1
I

k 6 1. Then, conditional on X
n

, � is centered
Gaussian with variance

he
m

, X̄�1
I

X
I

X̄�1
I

e
m

i
(k + 1)nµ̄

n

(I)
6 kX̄�1

I

k2kX
I

k
(k + 1)nµ̄

n

(I)
6 1.

Since kG�1
I

k 6 k⇤�1
I

kkX̄�1
I

kk⇤�1
I

k 6
p

nµ̄
n

(I) 6 p
n and (⇤

I

)0,0 = 1, we have

En

f,µ

�

|(b✓
I

)0|p|Xn

 

6 (k + 1)p/2np/2(Q _ 1)pEn

f,µ

{
�

1 + �|�|)p|X
n

 

= O(np/2),

for any I ⇢ [0, 1], and since k⇤
I

k 6 p
n on �

n,I

, it follows that

En

f,µ

�

|(b✓
I

)
m

|p|X
n

 

6 (k + 1)p/2np(Q _ 1)pEn

f,µ

{
�

1 + �|�|)p|X
n

 

= O(np),

for any 1 6 m 6 k. ⇤

6. Proof of theorem 2

The proof of the lower bound consists in a classical reduction to the Bayesian risk over an
hardest cubical subfamily of functions, see Korostelev (1993), Donoho (1994), Korostelev
and Nussbaum (1999) and Bertin (2004b). The main di↵erence with the former proofs is
that the subfamily of functions depends on the design via the bandwidth h

n,µ

(x), and that
we work within a ”small” interval I

n

. We recall that '
s

is defined by (2.4) and that it has
compact support [�T

s

, T
s

]. Let hI

n

:= max
x2I

n

h
n,µ

(x) and

⌅
n

:= 2T
s

c
s

(21/(s�k) + 1)hI

n

.

If I
n

= [a
n

, b
n

], M
n

:= [|I
n

|⌅�1
n

], we define the points

x
j

:= a
n

+ j ⌅
n

, j 2 J
n

:= {1, . . . ,M
n

}. (6.1)

We denote again µ
j

= µ(x
j

), h
j

= h
n,µ

(x
j

). Let us define the event

H
n,j

:=
n

�

�

�

1
nc

s

h
j

µ
j

n

X

i=1

'2
s

⇣X
i

� x
j

c
s

h
j

⌘

� 1
�

�

�

6 "
o

,

and H
n

:= \
j2J

n

H
n,j

. Together with the fact that k'
s

k2 = 1, we obtain using Bernstein
inequality that

lim
n!+1

Pn

µ

{H
n

} = 1. (6.2)

The subfamily of functions is defined as follows: we consider an hypercube ⇥ ⇢ [�1, 1]Mn ,
and for ✓ 2 ⇥, we define

f(x; ✓) :=
X

j2J
n

✓
j

f
j

(x), f
j

(x) := Lcs

s

hs

j

'
s

⇣x� x
j

c
s

h
j

⌘

.
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Clearly, f
j

2 ⌃(s, L). Let us show that f(· ; ✓) 2 ⌃(s, L). We note that

Supp
⇣

'
s

� ·� x
j

c
s

h
j

�

⌘

=
⇥

x
j

� c
s

T
s

h
j

, x
j

+ c
s

T
s

h
j

⇤

=: I
j

.

If x, y 2 I
j

then f(x; ✓) = ✓
j

f
j

(x), f(y; ✓) = ✓
j

f
j

(y) and the result is obvious. It su�ces to
consider the case x 2 I

j

and y 2 I
j+1. In this case, we have

|f (k)(x;✓)� f (k)(y; ✓)| = |✓
j

f (k)
j

(x)� ✓
j+1f

(k)
j+1(y)|

6 |f (k)
j

(x)� f (k)
j

(x
j

+ c
s

T
s

h
j

)|+ |f (k)
j+1(xj+1 � c

s

T
s

h
j+1)� f (k)

j+1(y)|

6 L
�

|x� x
j

� c
s

T
s

h
j

|s�k + |x
j+1 � c

s

T
s

h
j+1 � y|s�k

�

6 L
�

(2c
s

T
s

h
j

)s�k + (2c
s

T
s

h
j+1)s�k

�

6 2L(2c
s

T
s

hI

n

)s�k.

Moreover, since x 2 I
j

and y 2 I
j+1 we have |x � y| > x

j+1 � x
j

� c
s

T
s

(h
j

+ h
j+1) >

⌅
n

� 2c
s

T
s

hI

n

= 21/(s�k)(2c
s

T
s

hI

n

), and finally |f (k)(x; ✓) � f (k)(y; ✓)| 6 L|x � y|s�k, thus
f(· ; ✓) 2 ⌃(s, L). For any j 2 J

n

, we define the statistics

y
j

:=
P

n

i=1 Y
i

'
s

(X
i

)
P

n

i=1 '
2
s

(X
i

)
.

Since the f
j

have disjoint supports, we have that conditionally on X
n

, the y
j

are Gaussian
independent with En

f,µ

{y
j

|X
n

} = ✓
j

. Since

v2
j

:= En

f,µ

{y2
j

|X
n

} =
�2

P

n

i=1 f2
j

(X
i

)
,

we obtain that on H
n

,
2s + 1

2(1 + ") log n
6 v2

j

6 2s + 1
2(1� ") log n

. (6.3)

In the model (1.1) with f(·) = f(· ; ✓), conditionally on X
n

, the likelihood function of
(Y1, . . . , Yn

) can be written on H
n

in the form

dPn

f,µ

d�n

|X
n

(Y1, . . . , Yn

) =
n

Y

i=1

g
�

(Y
i

)
Y

j2J
n

g
v

j

(y
j

� ✓
j

)
g
v

j

(y
j

)
, (6.4)

where g
v

is the density of N(0, v2), and �n is the Lebesgue measure over Rn. This fact
follows from the following computation:

n

Y

i=1

g
�

(Y
i

)
Y

j2J
n

g
v

j

(y
j

� ✓
j

)
g
v

j

(y
j

)

=
1

�n(2⇡)n/2

n

Y

i=1

exp
�

� Y 2
i

/(2�2)
�

Y

j2J
n

exp
�

(2✓
j

y
j

� ✓
j

)/(2v2
j

)
�

=
1

�n(2⇡)n/2

n

Y

i=1



exp
⇣�Y 2

i

+
P

j2J
n

�

2Y
j

✓
j

f
j

(X
i

)� ✓2
j

f
j

(X
i

)2
�

2�2

⌘

�

=
1

�n(2⇡)n/2

n

Y

i=1

exp
⇣

� (Y
i

� f(X
i

; ✓))2

2�2

⌘

=
dPn

f,µ

d�n

|X
n

(Y1, . . . , Yn

).

In the following, we denote ⌃ = ⌃(s, L) and EI

n,f,T

:= sup
x2I

r
n,µ

(x)�1|T (x)� f(x)|. Since
w(·) is nondecreasing and f(· ; ✓) 2 ⌃ for any ✓ 2 ⇥, we have for any probability distribution
B on ⇥, by a minoration of the minimax risk by the Bayesian risk,

inf
T

sup
f2⌃

En

f,µ

�

w(EI

n,f,T

)
 

> w
�

(1� ")P
�

inf
T

Z

⇥
Pn

✓

�

EI

n,f,T

> (1� ")P
 

B(d✓),
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where Pn

✓

:= Pn

f(· ;✓),µ. Since by construction f(x
j

; ✓) = r
j

✓
j

P and x
j

2 I
n

, we obtain

inf
T

Z

⇥
Pn

✓

�

EI

n,f,T

> (1� ")P
 

B(d✓) > inf
b
✓

Z

⇥

Z

H
n

Pn

✓

�

max
j2J

n

|b✓
j

� ✓
j

| > 1� "|X
n

 

dPn

µ

B(d✓),

>
Z

H
n

inf
b
✓

Z

⇥
Pn

✓

�

max
j2J

n

|b✓
j

� ✓
j

| > 1� "|X
n

 

B(d✓)dPn

µ

,

where infb
✓

is taken among any measurable vector (with respect to the observations (1.1))
in RM

n . Then, we note that theorem 2 follows from (6.2) if we prove that on H
n

,

sup
b
✓

Z

⇥
Pn

✓

�

max
j2J

n

|b✓
j

� ✓
j

| < 1� "|X
n

 

B(d✓) = o(1). (6.5)

We choose ⇥ := ⇥M

n

"

where ⇥
"

:= {�(1 � "), 1 � "} and B :=
N

j2J
n

b
"

where b
"

:=
(��(1�") + �1�"

)/2. Note that using (6.4), the left hand side of (6.5) is smaller than
Z

Q

n

i=1 g
�

(Y
i

)
Q

j2J
n

g
v

j

(y
j

)

⇣

Y

j2J
n

sup
b
✓

j

2R

Z

⇥
"

1|b✓
j

�✓

j

|<1�"

g
v

j

(y
j

� ✓
j

)db
"

(✓
j

)
⌘

dY1 . . . dY
n

,

and b✓
j

= (1� ")1
y

j

>0� (1� ")1
y

j

<0 are strategies attaining the maximum. Thus, it su�ces
to prove the lower bound among estimators b✓ with coordinates b✓

j

2 ⇥
"

and measurable
with respect to y

j

only. Since the y
j

are independent with density g
v

j

(·� ✓
j

), the left hand
side of (6.5) is smaller than

Y

j2J
n

max
b
✓

j

2⇥
"

Z

⇥
"

Z

R
1|b✓

j

(u
j

)�✓

j

|<1�"

g
v

j

(u
j

� ✓
j

)du
j

db
"

(✓
j

)

=
Y

j2J
n

⇣

1� inf
b
✓

j

2⇥
"

Z

⇥
"

Z

R
1|b✓

j

(u)�✓

j

|>1�"

g
v

j

(u� ✓
j

)du db
"

(✓
j

)
⌘

,

and if �(x) :=
R

x

�1 g1(t)dt and D1 is a positive constant,

inf
b
✓

j

2⇥
"

Z

⇥
"

Z

R
1|b✓

j

(u)�✓

j

|>1�"

g
v

j

(u� ✓
j

)du db
"

(✓
j

)

> inf
b
✓

j

2⇥
"

1
2

Z

R

�

1b
✓

j

>0 + 1b
✓

j

<0

�

g
v

j

(u� (1� ")) ^ g
v

j

(u + (1� "))du

=
1
v
j

Z 0

�1
g1

⇣y � (1� ")
v
j

⌘

du = �
⇣

� 1� "

v
j

⌘

> D1p
log n

n�(1�")2(1+")/(2s+1),

where we used (6.3) and the fact that for x > 0, �(�x) = (1 + o(1)) exp(�x2/2)/(x
p

2⇡)
If L

n

:= n�(1�")2(1+")/(2s+1)(log n)�1/2, it follows that the left hand side of (6.5) is smaller
than

(1�D1Ln

)M

n 6 exp
�

|I
n

|⌅�1
n

log
�

1�D1Ln

��

,

and if D2 is a positive constant,

|I
n

|⌅�1
n

L
n

= D2|In

|n"/(2s+1) ⇥ n"

2(1�")/(2s+1)(log n)�1/2�1/(2s+1) ! +1

as n ! +1, since |I
n

|n"/(2s+1) ! +1, thus the theorem. ⇤
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